Submit Manuscript  

Article Details

Piroxicam: Source for Synthesis of Central Nervous System (CNS) Acting Drugs

[ Vol. 17 , Issue. 2 ]


Saganuwan Alhaji Saganuwan   Pages 135 - 140 ( 6 )


Background: The use of central nervous system (CNS) acting drugs in the management of neuro degenerative and psychiatric problems cannot be overemphasized. Therefore, the chemical structure of piroxicam can be modified to yield new CNS stimulants and depressants that can be of great benefit to man and animals.

Methodology: Acetylcholine has Methyl - Oxygen-Oxygen (M-O-O) and Nitrogen (N) functional groups which are structurally related to Sulphur-Oxygen-Oxygen (S-O-O) and Nitrogen (N) of piroxicam that are either methylated or hydrogenated. Each arecoline and nicotine has M-O-O in addition to methylated nitrogen and pyridine ring respectively, making them structurally related to piroxicam. Therefore, when Sulphur of piroxicam is replaced by methyl group, it may likely have muscarinic effects expressed by glandular secretion, gut sedation and vasodepression. Whereas the nitrogen group may be responsible for cholinergic effect in gaglia and striated muscle. Because of the carboxylic functional group (COOH), piroxicam may display depressant effect. Hence C = O, C = N and C = C in piroxicam may change due to biofield treatement.

Conclusion: The conversion of piroxicam to central nervous system (CNS) acting drugs may be by desulphation, methylation, dehydrogenation, carboxylation and carbonylation. The would-be synthesized CNS drugs from piroxicam, should have low molecular weight, lipid solubility and low PH.


Blood-brain-barrier, CNS, depressant, pharmaceutics, piroxicam, stimulant.


Department of Veterinary Physiology, Pharmacology and Biochemistry, College of Veterinary Medicine, University of Agriculture, P.M.B. 2373, Makurdi, Benue State

Graphical Abstract:

Read Full-Text article